
Introduction to Complexity and Applied Complexity, Spring 2021

Module 11 — Perception, Action and Mind

Notes by Sav Sidorov

Readings

● Gerd Gigerenzer — Gut Feelings, Chapter 1

● Maturana et al. — What the Frog’s Eye Tells the Frog’s Brain

● James J. Gibson — The Ecological Approach to Visual Perception, Chapter 1

Summary of the Readings

Let’s take a look at the readings for this module. The first comes from Gerd Gigerenzer.

His work is very focused on pushing back against the popular idea that humans do

irrational things. He recontextualizes the kinds of things people do and asks whether

there’s some hidden logic in how people behave where there doesn’t appear to be any —

maybe it’s your model of the world that’s flawed, not the behavior that so-called

“irrational people” partake in. A quote from Gigerenzer:

“Many skills lack descriptive language.”

In addition, even if you can describe a skill, your description might be in opposition to

how you act. You might think you do one thing, but actually you do something

completely different to achieve the outcome you’re going for without realizing it. You

could say that there exist two worlds: the world of embodied action and knowledge,

and the linguistic world. We often try to connect them to each other, but we’re not

always successful.
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Another quote from Gigerenzer:

“Good expert judgement is generally of an intuitive nature.”

That’s a very interesting point, considering the scientism we’re exposed to on a regular

basis. In decision making, for instance, we often get told that we need some long

formula, or a complicated and intricate model. But in fact, the best of us operate on

intuitions developed over years of experience.

Another paper from Maturana, ‘What the Frog’s Eye Tells the Frog’s Brain’:

“The operations [of the eye] thus have much more the flavor of perception than

of sensation, if that distinction has any meaning now.”

Often, a distinction gets made between perception and sensation. The idea of sensation

is that raw, unprocessed information (for example) hits your retina, and from there the

information gets processed by your brain. It actually turns out that the two are much

more entangled, and there’s never a raw, unprocessed information layer. The moment

the photons hit the retina is the moment some processing begins to take place, and

patterns begin to be extracted.

This last quote is from Gibson, from ‘The Ecological Approach to Visual Perception’. For

him, ecological means that the organism is situated in its natural environment. It

doesn’t refer to flows of matter and energy — the way in which we usually think about

ecosystems. Gibson:

“The environment is not the same as the physical world.”

What does he mean by that? What exactly are we perceiving? We’ll look into that as we

go.
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Motivations

● We looked at the organization of living systems, and we know they must reach

requisite variety to remain viable in a fluctuating environment.

● Many organisms achieve this in part through acting in and on the environment.

● The ability to behave in this way demands the ability to perceive and act.

● We posit that perception and action are really two parts of an inseparable whole.

For example, we can scope to the heart or to the liver when analysing an

organism, but they both come from a unified process.

● Further, we posit that the mind emerges out of the

perception-action-environment relationship, and that most attempts to treat

the mind in an abstract, isolated fashion suffer from a scoping problem. For

example, the mind is not just a product of the brain, even though the brain is

certainly involved in that process.

● Similarly, we see that the organism-environment system comes as a whole. This

gets at what Gibson said about the environment not being the same as the

physical world. The environment of a given organism includes information about

the structure of the organism. You can’t only look at the environment, you can’t

only look at the organism.

● Connecting to our concepts of self-organization, behavior is not facilitated by a

central controller. It might certainly seem that way, given our brains and

bundles of neurons, but it would be wrong to think of the brain as a central

controller that receives signals and sends out instructions. In reality, behavior is

something that is a decentralized and distributed process that involves the

brain, the body, and interaction with the world.
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Closure and Information

Last module, we talked about autopoiesis — a kind of topological closure over some

subsystem of the larger system. To revisit this quote from Ashby:

“Cybernetics might, in fact, be defined as the study of systems that are open to

energy but closed to information and control — systems that are

‘information-tight’.”

Again, we’re seeing this interplay between closure and openness of systems. When

talking about perception, it’s odd, in a way, to talk about closure of the information of a

system because the system has to get some kind of information from the environment

in order to act. We’ll seek to reconcile that.

Another quote, from Bernard Scott:

“...an organism does not receive “information” as something transmitted to it,

rather, as a circularly organized system it interprets perturbations as being

informative.”

Scott is getting at the notion of perturbing existing parts of the system, instead of

consuming prepackaged information from the outside. There’s a two way exchange that

occurs between the organism and the environment through perturbation:
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Brain and Mind

Often, when cognition and the mind is discussed, the brain is focussed on. That’s a

reasonable thing to do — the brain is, in and of itself, massively complex. The human

brain, for example, has about 100 billion neurons, and about 100 trillion connections.

And if you think about the total possibile state-space for this system, you’d have close

to 2100 billion possible states, which is unfathomably huge.

But do you need a brain to have a mind? Does a mind demand a nervous system?

Perhaps not. Cognition, or what we call the mind, might be an emergent property of an

autopoietic system being coupled to an environment, and it’s possible that nerves and

neurons are incidental to that.

Nowadays, for example, it’s pretty easy to find arguments that trees and other

biological systems have something resembling a mind. Trees don’t have nervous

systems, but they have root systems that engage in a lot of interesting chemical

signaling within their own root networks and among other trees.
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The Scope of Mind

How should we scope the mind? We might start by looking at the brain in isolation.

But then, we might realize that the brain relates to the body, and start looking at the

mind as the brain plus the body.

Then we might say: “well, the brain-body system exists in an environment, and actually

couldn’t come about and thrive if the environment around it didn’t exist”. So then, we

might think about the mind as the brain, the body, and the world at large outside of the

bounds of the autopoietic system.

You’ll reach different insights depending on how you set the scope of your analysis. It’s

possible to miss-set the scope, and thus not be able to answer the question you’ve set

out to answer. For example, if you ask “how does a person catch a ball?”, you’ll get no

answer if you study the brain in isolation.

The Homunculus

Here’s a thought experiment to show why this notion of a “central controller” is wrong.

Central to it is the idea of the homunculus.

Imagine a little man that sits in the machine and acts on the world. That can’t possibly

be the case. Because then, you’d have to have another little man who sits in the head of

the first little man and dictates all of his actions. Hence, an infinite regress of central

controllers. Turtles all the way down. You never get closer to answering the question of

how actions and behavior is controlled.
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What Does the Mind Do?

So what does the mind do, then? The classical view is that the mind houses mental

representations. The best thing that those neurons can do is try to figure out the

material properties of the thing being looked at and represent that thing with as high of

a resolution as possible as a model in the brain, as that thing exists in nature.

That classical view is almost certainly wrong. There’s way too much going on in the

world for our brains to represent it in detail. Every piece of information gets filtered as

it goes to your brain. We can say that there’s something objectively out there, and that

our brain creates some kind of models to help you act in the world, but how exactly the
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physical and the mental world relate between each other is a topic of hot debate for

those in the field.

Symbolism vs Connectionism

The Artificial Intelligence community is a group of people who think about the mind

and how it works in a rigorous way. Let’s briefly explore their ideas. There’s a major

dichotomy that exists in this space — that of the symbolists and the connectionists.

There is definitely a lot of crossover that happens between these two schools of

thought, but for our purposes, let’s focus on the distinction between them.

Symbolists, basically, want to build AI systems that resemble our representation model.

They think of systems as having discrete symbols that have a clear representation, and

that live in some network of relations.

Symbolists envision the mind as a kind of logical process over these networks. So what

you have is a graph and a set of reasoning rules to make inferences internally in ‘the

mind’. Let’s look at one example of such a graph, shown above. Starting at the node that

represents a tree, one can determine that a tree is mortal, even though there is no

direct arrow that goes from tree to mortal.
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Historically, graphs like this have been called expert systems. The more contemporary

term is knowledge graph. There’s usually an inference engine involved as well — it tells

you how to make new propositions over the graph.

Expert systems are really useful in a lot of settings. They’ve had success in medical

diagnostics, for example. They’re also used quite extensively by Google.

Expert systems tend to go in and out of fashion, and are not without their

shortcomings. These graphs are incredibly fragile to the assumptions they make. If you

have a wrong link, then your conclusions are wrong. If you present something that’s

not on the graph, the system doesn’t know what to do with it. The strength, of course,

is that these systems are human-readable.

Connectionists, on the other hand, are the people more interested in what we call

artificial neural networks (ANNs).

The brain is composed of neurons — cells that fire electrical signals down a tube — and

once you connect all of those neurons together, you have a brain. Neurons either fire at

any given moment (associated with on) or not (associated with off). A neuron “decides”

whether to fire or not based on whether the neurons connected to it are firing into it or

not. That’s some quick and dirty neuroscience for you.

Connectionsits decide to build systems that use this idea of neural networks within the

brain as an analogy.
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In an ANN, you have “neurons” that are very internally simple — they can either be on

or off — and are connected to other neurons. You also have some kind of input layer —

maybe a picture with pixels, some pixels being on and others being off — that gets fed

into the neural network. In an ANN, your focus is on what the connections between the

neurons should be — which neurons should be connected to which neurons, and how

strongly should they be connected? In other words, you’re concerned with the

organization of the system.

Because none of these nodes — the “neurons” in the ANN — seem to have any obvious

correspondence to anything we’re interested in — trees, leaves, plants, etc — an

obvious question to ask might be: do they represent anything at all? Often, these

systems are referred to as subsymbolic. If there’s something in these systems that’s

akin to mental representation, it can only be on the collective scale of many neurons

acting together in coordination — maybe those patterns of activity correspond to

things in the world. That’s a very different level of analysis, compared to the symbolists.

With ANNs, what we focus on is the collective behavior of many simple units, and how

to organize these simple units to do useful work for us.

These systems can be set up to learn about certain kinds of patterns. Based on the

output, you either tell the network to change, or reinforce its connectivity. This is what

Machine Learning is all about.
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The upside of connectionist systems is that they handle changes and differences in

input very well. The downside is that these systems are basically a black box. There are

many neurons and many connections, and it can be very hard to tell — if not impossible

— why you’re getting the output that you’re getting.

Types of Artificial Neural Networks

Within the realm of ANNs, we have two major classes.

Feedforward networks are like the one we drew above: they have an input of some kind,

and multiple layers of “neurons” which eventually converge on an output. The point of

a feedforward network is that the flow of activity is going one way. A neuron to the

right cannot affect a neuron to the left of it.

In recurrent networks, circularity is possible. You can have loops in the system.

Recurrent systems can generate and maintain their own activity. They have internal

dynamics and lawful behavior of their own. Feedforward systems have a clear input, a

set of transformations that take place, and a clear output. In a recurrent system, you

might have input (i.e. perturbations) coming from the outside, and you might have
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some effectors that it’s influencing, but in general these systems resemble the Bernard

Scott picture of internal dynamics being perturbed much more.

Perceptrons

The most basic version of a feedforward network consists of a type of artificial neuron

called the perceptron. A perceptron can only have a binary output. It works like this:

there are weights associated with the neuron — x1, x2, x3 for example. Each weight can

have a certain value. Depending on the values of the weights, the neuron determines

whether to fire or not (i.e. whether the output is 0 or 1).

If the sum of the weights is above some threshold value, the neuron fires. If below, it

doesn’t. We can write this out in an equation:

The variable x is our input, w is the weight assigned to that input, and b is the threshold

value.

Hopfield Networks

A hopfield network is the simplest case of a recurrent network. In the network below,

for example, everything is connected to everything, making a complete graph. If we

have 5 nodes, for example, we can refer to the complete graph as C5.
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As opposed to feeding it an input and getting an answer, what you’re trying to

construct is a system that’ll have a set of attractors corresponding to things that you

want the system to remember and recognize. Like in a feedforward system, we’re

looking for a set of weights, except now we’re looking for a set of weights such that

there’s a prototypical representation of, lets say, the notions of 1, 2, 3, etc (if we’re

looking to build an ANN that recognizes handwritten numbers). The individual example

of handwritten digits may be different, but the idea here is that they land somewhere

within these basins of attraction, and will evolve under their own dynamics to a stable

fixed point. The fixed point acts as a sort of “memory” of a 1, a 2, a 3, etc.

This is sometimes called content-addressable memory, or associative memory. Instead

of searching solely by address or location, you look for places where the system

resolves to a common state. You can evolve the state with a set of difference equations,

like we’ve seen before, resulting in some binary output:
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The state of neuron i — si — at the next point in time is determined by summing over all

of the neurons (from 1 to N). With each neuron you take the weight of the connection

between our neuron i and a neuron j, and multiply it by the state of j. If the value of the

sum is greater than some threshold value for that neuron, ϴi, then the state is 1.

Otherwise, the state is -1. Why not 0? It has to do with how neurons reinforce each

other. If the connection between two neurons is positive, the neurons will synchronize

(if neuron i is positive, it will push neuron j to also be positive). If the connection is

negative, the neurons will push away from each other (the positive neuron will push

the other into a negative state, just as a negative neuron will push the other into a

positive state).

The name of the game here is determining the weights such that they generate an

attractor dynamical landscape, where the memories are of meaningful things.

The Retinal “Image” and the Frog’s Eye

Let’s continue with the example of visual perception, since it’s a very natural and

intuitive thing for us to think about.

There’s this idea of the retinal “image”. The thinking is, the eye acts like a camera. The

light enters the eye, activates certain nerves at the back of your eye (which can be

thought of as pixels), and this created bitmap gets sent to the brain for processing.
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It turns out that this notion of a retinal image is wrong. What the Maturana paper

shows is that there never exists a retinal image — this raw unprocessed bitmap that

then gets interpreted by the brain. The moment that light hits the retina, there are

lateral and feedforward connections that determine what gets sent down the nerve and

to the brain.

There’s an organization that our retinas follow, called center-surround organization.

Center-surround organization responds to the spatial pattern of light. It looks

something like this:

This should look familiar, as it’s similar to the local activation, long range inhibition

we’ve seen before. Center-surround is organized in basically the same way. There’s an

inner ring of excitatory activity (+) and an outer ring of inhibitory activity (-).

How does it work? Imagine this center-surround ring is scanning an area of black and

white pixels — the black representing positive numbers and the white representing
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negatives. Let’s see how our ring responds to a black square. If the square is big enough

to cover both rings, the +’s combine with the positive black square to get a positive

result, and the -’s combine to yield negative. Taken together, you get zero:

However, if only the inner ring was sitting on the square (+’s combine with positive

pixels), and the outer ring sitting on the white (-’s combine with negative pixels), it

would yield positive in both rings:

So our detector is not responding to the pointwise light of the retinal “image”, but

rather the spatial pattern of light.

Even this model is massively oversimplified. It turns out that there’s also a bunch of

information coming down from the central brain to the retina that modulates activity

as well, along with other mechanisms. One interesting consequence of this: color is

always thought of as wavelengths, but you can induce the perception of certain colors
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without the wavelengths being there. This is because perception really comes out of

these relations and patterns — information getting communicated back and forth

between the brain and the eye.

Gestalt

There’s a whole field of what’s called Gestalt psychology that opened up — looking at

how the wholes of what we perceive relate to the component parts, and the

implications that has for perception. Here are some of the concepts they looked at:

For example, with reification, you can see the edges of a triangle where none exist,

simply based on the strong implication of continuous edges you get from other parts of

the image.

One-Shot Learning

There’s another interesting property of our perception called one-shot learning. When

you experience something, you get it forever — you don’t need a training set to learn it

over time.
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See if you can make sense of what’s going on in this picture:

Once you see it, you can’t unsee it (see the answer here).

Detection of Constraints

Your brain can also pick up on the constraints between different parts in a dynamic

image — how do the parts move relative to each other.
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This is highlighted in the Johansson experiment. Click on the video and see how much

easier it is to tell what is being communicated when the dots are moving, as opposed to

them being paused:

One might think that movement complicates things and makes it harder for us to

perceive and interpret objects in the world. However, what we often find is that

movement often gives you information. It’s not an additional problem to be solved, it’s

actually telling you how to solve the problem.

Closure of the Nervous System

Imagine a child sitting and doing math on paper: does that violate informational

closure? Actually it doesn’t — the nervous system doesn’t care if two neurons talk to

each other through synaptic connections, or if that information passes through the

world (say, neuron → hand movement on page → retina→ neuron). We often do our

thinking through the world, without breaking the assumption of informational closure

of the nervous system.
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Sensorimotor Contingencies

In the above picture, we see a flying bird. How it’s flying is determined by how it’s

using its muscles. But when it uses its muscles, that has consequences on the sensory

stimuli it receives, creating a kind of feedback loop.

When the bird moves toward some point, from its perspective it will see the optic flow

come out of the point. It’ll see a spreading out of the optic environment.

On the other hand, if it’s moving away from something, the direction of the optic flow

will be reversed, now flowing into the point. The environment will seem to clump

together.
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That’s how birds — and all other animals — figure out what it’s moving towards and

away from — by looking at the optic flow. If you start walking towards a wall, for

example, you’ll see an outward optic flow. If you stop walking, the optic flow will stop.

The sensation is completely coupled to the motor behavior.

And that’s the idea of the sensorimotor contingency — how you move affects what you

sense. This is how we learn to perceive the world.

Heuristics

Scoping out a bit, let’s look at how people solve perceptual and action problems using

the environment. One example that Gigerenzer brings up in Gut Feelings is how an

outfielder catches a fly ball.

Richard Dawkins proposes an idea in The Selfish Gene about how this might work:

what the person must be doing is running a model in their head that calculates the

trajectory of the ball and where it’ll land, and using that model to catch the ball. It turns

out that this is wrong. Very, very wrong.

Instead, researchers identified a network of heuristics that people use to catch the ball.

We won’t get into nuances here, because it turns out to be quite an intricate network of

heuristics, but let’s look at one basic heuristic, when the ball is already in the air: look

at the ball directly, then move your body such that the angle of your gaze becomes

stabilized. If you need to drop your gaze to keep looking at the ball, that would indicate

you need to speed up. If you start raising your gaze, that means you need to slow down.

The constant angle puts you on an intercept path with the ball.
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In general, heuristics trump abstract calculations.

Landing a plane is similar. J. J. Gibson’s early work focused on WWII pilots and the kinds

of heuristics they used for landing planes.

Pilots look out at the runway through their windshield. It turns out that they use

smudges on their windshield to align themselves perfectly with the runway — if the

smudges stopped moving relative to the runway, that put them on a landing trajectory.

Actually, this same phenomenon is responsible for air-to-air plane collisions. If two

planes are on a collision course, the angle between them stays constant, and therefore

the relative angle on the retina of the pilots stays constant, which means there’s no

movement on the retina. We perceive movement much better than we perceive static

things. In fact, the retina actually filters out unmoving objects if they stay on the retina

for long enough, because it assumes that it’s some kind of artifact. Because of this,

pilots often fail to see the incoming plane.
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Asimo vs Boston Dynamics

Take a look at these two videos:

Honda's Asimo Robot

Boston Dynamics’ Atlas

These two robots are great examples of different paradigms when it comes to

perception. Asimo is based on precalculation — calculate everything in advance in your

brain model and decide what to do afterwards. Atlas, on the other hand, uses a

combination of neural networks and heuristics. He can deal with uneven terrain and

people pushing him over — notice how he puts out his leg as he almost falls (0:45). As

Atlas detects that he’s losing his balance, he relaxes his leg and thereby lets his leg find

gravity. He doesn’t necessarily know where gravity is, but his leg does. It’s easier for his

leg to figure that out than his brain.

Asimo, on the other hand…
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Affordances

J.J. Gibson’s lasting contribution is in the concept of affordances. Affordances are

defined as opportunities for action. What the opportunities for action are depends on

the structure of the organism. How is it built? What does it know how to do? What are

its previous experiences?

Imagine there’s a tree and that there’s a branch on that tree. A question might be: “Is

this branch graspable?” Well, that would depend on who’s asking. For an organism that

has a hand, for example, that branch might be graspable. An affordance always evokes

the agent and its structure.

Remember: “The environment is not the same as the physical world.” Whether or not a

branch is graspable is not a statement about the physical world. It is instead a

statement about the interface between the agent and the physical world. Things in the

environment are graspable, but graspable is not a concept that exists in the physical

world.

If the branch is graspable, then the tree might be climbable. Other things in the

environment might be sittable, walkable, or liftable. A kind of verb-centric approach to

perception.
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The idea of affordances has also found its way into design. Don Norman wrote a book

called The Design of Everyday Things in which he explores this. Affordances can work

well with design or work counter to the design. Here are examples of bad affordances:

Notice that the handle for the teapot is on the wrong side — it would be difficult to pour

from such a teapot. It’s not pourable. Although, if this is a chug pot, this might actually

be a good affordance. Same with the doors — the handles on the door make you want to

pull, when in fact you have to push to open the door.

Coordination

All of these heuristic-based control processes have a few things in common.

First, the control is decentralized. There’s some concentration of control in certain

places, like in the nervous system, but for the most part, the processing takes place in

many locations instead of one central location.

We’ve seen pattern-forming processes, and we can think of coordinated behavior in

pattern-forming terms.
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We also have dynamical behaviors like the ones we’ve seen before, such as phase

transitions.

Horse Gaits

Look at this video of horse gaits. Notice that as the horse changes speed, you get

distinct phase transitions between different modes of walking — qualitatively different

coordination regimes, just like the phase transitions we’ve seen before. There’s a

continuous control parameter — velocity — but as you sweep it, you get qualitatively

different coordination patterns.  All motion contributes, in a decentralized

coordination process, in order to change phases.

Coordination Dynamics

Neuroscientist Scott Kelso developed a subfield of dynamical systems that looks at

coordination behavior. One of his experiments involved moving your fingers in-phase

and anti-phase. What you start to notice, as you increase the speed of the movement, is

that you’ll typically spontaneously change into an in-phase pattern, because it’s more

stable.

The stable, in-phase pattern is not just a pattern in your nervous system — it’s also a

pattern in your ligaments. At different speeds, your ligaments optimize for different

motions, like we saw with the horse gait.
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Countersteering and Explicit Knowledge

This video shows that when you steer a bike, to turn left, you actually have to first

countersteer and turn the handlebars to the right. Yet if you were explaining it, you

might say that to turn left, you turn the handlebars to the left. Here once again, we see

a disconnect between explicit and implicit knowledge. This, like the other examples

we’ve seen, serves as a strong indictment of explicit knowledge — you might think you

know something and be totally wrong.

There’s also an implication here for learning — in some cases it might be better to learn

by doing something in the physical environment as opposed to listening to a lecture or

reading a book, because you’d pick up on intuitions and heuristics that come with

implicit knowledge. Of course, this breaks down with more abstract subjects, but

wherever possible, learn by doing.

Target Fixation

Another brain quirk we come across when looking at the way people drive bikes is

target fixation. This is a common way that people crash bikes into objects. Watch.

The gist is, you go where you look. By setting a goal, the system organizes itself around

that goal. Out of this phenomena comes the aphorism “focus on the road, not the wall”.

Environment Coupling

There are two ways in which you can move your eyes: in saccades, where your eyes

jump from one point to another, and smooth pursuit, where your eyes smoothly follow
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a moving object. It turns out that in the absence of a moving object, you can only move

your eyes in saccades, even if you try to move them smoothly. Here we see a way in

which you are coupled to your environment — the option of smooth pursuit doesn’t

become available to you unless there’s something in the environment that prompts it.

Attention & Bandwidth Limitations

The classic selective attention test video demonstrates an important point about the

way our attention works.

We are severely bandwidth constrained. Even things that are right in your face can be

missed when you’re focussed on something else. In experimenting on pilots flying in a

simulator, it’s been shown that even a small distraction can lead to failure.

There’s a big implication here for the organization of systems. The reason why we’re

not centralized is because there’s too much information to deal with, and a centralized

system can only do so much.

Metacognition

Metacognition is the idea of evaluating your own states of knowledge. It’s most

apparent not when you know you know something, but when you know you don’t

know.

Going forward, as we start talking about risk and decision making, it turns out that

knowing when you don’t know can be quite helpful.

Strange Loops

This idea comes from Douglas Hofstadter. A strange loop comes about when a system

begins to represent itself, forming a kind of strange feedback loop. In Gödel, Escher,

Bach and later in I am a Strange Loop, Hofstadter uses this idea to develop a thesis that

attempts to explain consciousness.
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https://www.youtube.com/watch?v=vJG698U2Mvo


From Gödel, Escher, Bach, Preface to the 20th Anniversary Edition:

“In short, an "I" comes about - in my view, at least - via a kind of vortex whereby

patterns in a brain mirror the brain's mirroring of the world, and eventually

mirror themselves, whereupon the vortex of "I" becomes a real, causal entity. For

an imperfect but vivid concrete analogue to this curious abstract phenomenon,

think of what happens when a TV camera is pointed at a TV screen so as to

display the screen on itself (and that screen on itself, etc.) — what in GEB I called

a "self-engulfing television", and in my later writings I sometimes call a

"level-crossing feedback loop”
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